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Abstract Oblique flexural gravity-wave scattering due to an abrupt change in water depth in the presence of a
compressive force is investigated based on the linearized water-wave theory in the case of finite water depth and
shallow-water approximation. Using the results for a single step, wide-spacing approximation is used to analyze
wave transformation by multiple steps and submerged block. An energy relation for oblique flexural gravity-wave
scattering due to a change in bottom topography is derived using the argument of wave energy flux and is used to
check the accuracy of the computation. The changes in water depth significantly contribute to the change in the
scattering coefficients. In the case of oblique wave scattering, critical angles are observed in certain cases. Further,
a resonating pattern in the reflection coefficients is observed due to change in the water depth irrespective of the
presence of a compressive force in the case of a submerged block.

Keywords Flexural gravity waves · Reflection and transmission coefficients · Shallow-water approximation ·
Variable bottom topography · Wide-spacing approximation

1 Introduction

Over the last two decades, the interaction of surface waves with uneven bottom topography has been studied exten-
sively, to achieve better understanding of wave transformation due to changes in bottom profile. An abrupt change
in bottom profile leads to wave reflection, refraction and shoaling, which have significant effects on the construction
of very large floating structures (VLFS) in coastal regions. These types of ocean structures are unique in nature
primarily because of their unprecedented length and displacement scale. These structures act as alternatives to the
traditional land reclamation processes with less environmental effects and can provide facilities such as floating
airports, storage, military purposes, industrial utilization etc. VLFS are in general constructed near coastal regions,
and it is often difficult to find a vast flat seabed area. A related problem is in the polar region where a vast ocean

D. Karmakar · T. Sahoo (B)
Department of Ocean Engineering and Naval Architecture, Indian Institute of Technology,
721 302 Kharagpur, India
e-mail: tsahoo@naval.iitkgp.ernet.in; tsahoo1967@yahoo.com

J. Bhattacharjee
Centre for Marine Technology and Engineering, Technical University of Lisbon, Instituto Superior Tecnico,
Av. Rovisco Pais, 1049-001 Lisboa, Portugal

123
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surface is covered by thin sheets of ice that extends up to the continental shelves. These continental shelves are
usually uneven and can be visualized as step bottom. Ocean waves propagate into the ice fields to weaken and
rupture continuous sea-ice which has an important impact on global climate as temporal adjustments in pack ice
serve as a proxy of climate change.

A large amount of work on wave–ice interaction in water of constant depth is reported in the literature where the
ice-sheets are modelled as thin elastic plates. Marchenko [1] analyzed the parametric excitation of flexural gravity
edge waves beneath an elastic ice-sheet with a crack. It is observed that the reflection and transmission coefficients
of the waves through the crack depend strongly on the wave frequency and the incident angle. Williams and Squire
[2] studied the scattering of oblique flexural gravity waves due to randomly shaped and spaced irregularities in
sea-ice by the application of a Green’s function and wide-spacing approximation. Williams and Squire [3] used
Wiener–Hopf and residue-calculus technique to study the scattering of flexural gravity waves at the boundaries
between three floating ice-sheets. Porter and Evans [4] used wide-spacing approximation to study the wave reflec-
tion by a semi-infinite periodic array of cracks in floating ice-sheets in water of finite depth. A detailed study on
the wave scattering by floating ice-sheets of varying thickness can be found in the Ph.D. thesis of Bennetts [5]
and Bennetts et al. [6]. Recently, Squire [7] extensively studied the connection between sea-ice research and VLFS
hydroelasticity.

There has been considerable progress in the literature on the hydroelastic behavior of VLFS, where the main
interest is confined to the hydroelastic response of a thin plate with flat sea-bottoms. Bai et al. [8] analyzed the
hydroelastic response of a floating runway located in harbor using the Localized Finite-Element Method based on a
thin plate and long-wave theories in water of uniform depth. It is observed that the wave amplification in the harbor
is altered due to the presence of the runway. Watanabe et al. [9] have reviewed recent progresses on the hydroelastic
responses of VLFS. Ohkusu and Namba [10] studied the hydroelastic behavior of large floating structures under the
assumptions of thin-plate theory and linearized shallow-water-wave approximation. Sturova [11] studied the effect
of periodic surface pressure on a rectangular elastic plate floating on shallow-water and found that elastic plates
floating on shallow water can possess wave properties in the case of non-zero immersion. Williams and Squire
[12] used a Green’s function technique to study the effect of submergence on wave scattering across a transition
between two floating elastic plates. Further, they developed a method based on a wide-spacing approximation,
which provides the scattering coefficients when submergence is included.

However, there have been few studies on the hydroelastic behavior of floating structures considering the
sea-bottom topography. Wang and Meylan [13] presented a solution for the linear wave forcing of a floating
thin elastic plate on water of variable depth by using the boundary-element method. The results for the reflection
coefficient showed that, for certain parameters, there is a significant difference between the variable- and constant-
depth results. Andrianov and Hermans [14] discussed the influence of water depth on the hydroelastic response of
VLFS. An integro-differential equation is derived to analyze the deflection of the platforms due to incident waves
in the case of finite and infinite water depth. Murai et al. [15] studied the effects of sea-bottom topography on the
hydroelastic response of VLFS having non-zero draft by using the eigenfunction-expansion method. Porter and
Porter [16] analyzed the scattering of flexural gravity waves due to a change in water depth and ice thickness based
on mild-slope approximations. Kyoung et al. [17] studied the effect of sea-bottom topography on the hydroelastic
response of VLFS using a finite-element method. A significant change in the hydroelastic response of the VLFS is
observed in variable sea-bottom as the incident wave length increases and the mean water depth decreases. Belibas-
sakis and Athanassoulis [18] performed a hydroelastic analysis of large floating platforms over variable bathymetry
by a coupled-mode method. The method is based on the appropriate generalization of the unconstrained variational
principle which models the evolution of nonlinear water waves in intermediate depth over a general bathymatry.

In the present paper, the transformation of obliquely incident flexural gravity waves due to multiple variation
in step-type bottom topography is investigated in finite water depth under the assumption of small-amplitude
water-wave theory. It is assumed that the flexural gravity waves are propagating over a floating ice-sheet, which
is under uniform compressive force. The mathematical solution for a single step is derived by using the expan-
sion formulae and the corresponding orthogonal mode-coupling relations developed by Manam et al. [19]. The
conditions for the existence of a critical angle beyond which full reflection takes place are discussed in the case
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of single and multiple steps. Using the continuity of pressure and mass flux, wave transformation by single-step
bottom topography is analyzed based on shallow-water approximation. The solutions, for wave transformation due
to multiple-step topography, are derived from the single-step results in both the cases of finite water depth and
shallow-water approximation using a wide-spacing approximation. It is assumed that the steps are wide apart so
that the presence of one step does not alter the wave motion near the subsequent step. The effects of an abrupt
change in water depth on the wave height ratio and on the reflection and transmission coefficients in the case
of shoaling and reflection in shallow water are discussed separately as subcases. The energy relation for oblique
scattering of flexural gravity waves is derived based on energy-flux arguments in Appendix A and are used to cor-
roborate the analysis of wave scattering. The solution procedure for infinite-step bottom topography is discussed in
Appendix B.

2 Wave scattering in finite water depth

In this section, the scattering of oblique flexural gravity waves due to abrupt changes in water depth is stud-
ied under the assumptions of linearized water-wave theory and small-amplitude plate response. It is assumed
that the free surface is covered by an ice-sheet and the bottom topographical variations are modeled as multiple
steps of different water depths. The detailed solution procedure in the case of a single step is discussed in this
section.

2.1 The general boundary-value problem

In the present study, a three-dimensional Cartesian co-ordinate system is chosen with x-z denoting the horizon-
tal plane and the y-axis being vertically downwards positive. It is assumed that there are N steps at x = −a j ,

j = 1, 2, . . . , N as shown in Fig. 1. The water is assumed to be of finite depth and occupies the region
⋃N+1

j=1
I j

with I j ≡ (−a j < x < −a j−1, 0 < y < h j ) for j = 2, 3, . . . , N and I1 ≡ (−a1 < x < ∞, 0 < y < h1),
IN+1 ≡ (−∞ < x < −aN , 0 < y < hN+1) with z ∈ (−∞,∞) for all I j . It is assumed that an infinite ice-sheet of
small thickness d, which is under uniform compressive force Tc per unit surface area, is floating on the undisturbed
water surface y = 0, −∞ < x, z < ∞. A monochromatic ice-coupled wave is obliquely incident at an angle θ

on the first step at x = −a1, y = h1 and propagates through the subsequent steps. We assume that the fluid is
inviscid, incompressible, the motion is irrotational and simply harmonic in time with angular frequency ω. Thus,
there exist a velocity potential � j (x, y, z, t) and the deflections of the ice-sheet ζ j (x, z, t), which are of the form
� j (x, y, z, t) = Re{φ j (x, y)eilz−iωt }, ζ j (x, z, t) = Re{η j (x)eilz−iωt }, where Re denotes the real part and l is
the component of the wave number along the z-direction. Thus, the spatial velocity potential φ j (x, y) satisfies the
partial differential equation

y=hN+1

x = -a1

y = h1

x = -a2x = -aN -1x = -aN

y = h3y = hN

y = h2

y

x

z
Incident wave

Ice sheet

Fig. 1 Schematic diagram for multiple step bottom topography
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(∇2
xy − l2)φ j = 0, (1)

where, ∇2
xy = (∂2

x + ∂2
y ). The linearized ice-covered boundary condition on the mean free surface in the presence

of a compressive force is given by (as in [20])
{(

1 − Q∂2
y + D∂4

y

)
∂y + K

}
φ j = 0 on y = 0, (2)

where D = E I/(ρg − msω
2), Q = Tc/(ρg − msω

2), K = ρω2/(ρg − msω
2), E is the Young’s modulus,

I = d3/12(1 − ν2), ν is the Poisson’s ratio, ms = ρi d, ρi is the density of the ice-sheet, ρ is the density of water
and g is the acceleration due to gravity. The bottom boundary condition is given by

φ jn = 0, on the bottom surface, (3)

where n is the outward drawn normal to the bottom surface. The continuity of the horizontal component of the
velocity and pressure across the vertical interface along the steps at x = −a j for j = 1, 2, . . . , N yields

φ( j+1)x = φ j x , φ( j+1) = φ j at x = −a j , for 0 < y < h j . (4)

Further, at x = −a j , y = 0, continuity of the transverse deflection of the ice-sheet, slope of deflection, bending
moment and shear force yields

φ j y = φ( j+1)y, φ j xy = φ( j+1)xy, EI(∂2
x − νl2)φ j y = EI(∂2

x − νl2)φ( j+1)y,
[
EI

{
∂3

x − (2 − ν)l2∂x
} + Tc∂x

]
φ j y = [

EI
{
∂3

x − (2 − ν)l2∂x
} + Tc∂x

]
φ( j+1)y .

(5)

Finally, the far-field radiation conditions are of the form

φ1(x, y) ∼ (e−ik10x + RN0eik10x ) f10(y) as x → ∞,

φN+1(x, y) ∼ TN0e−ik(N+1)0x f(N+1)0(y) as x → −∞,
(6)

with f j0(y) = cosh γ j0(h j − y)/ cosh γ j0h j , j = 1, N +1 and γ j0 are positive real roots of the dispersion relations

K = (Dγ 4
j0 − Qγ 2

j0 + 1)γ j0 tanh γ j0h j , j = 1, N + 1. (7)

The unknown constants RN0 and TN0 are associated with the amplitude of the reflected and transmitted waves in
the case of N variations in bottom topography. The constants k j0, j = 1, N + 1 are the components of the wave
numbers along the x-axis associated with the incident and transmitted waves.

2.2 Wave scattering by a single step

In the present subsection, we will discuss in detail the solution procedure for oblique flexural gravity-wave scat-
tering by a single step in water of finite depth. The fluid domain is divided into two sub-domains, namely region
1 (0 < x < ∞, 0 < y < h1, −∞ < z < ∞) and region 2 (−∞ < x < 0, 0 < y < h2, −∞ < z < ∞) as shown
in Fig. 2. Hereafter, the subscripts will denote the parametric values in the respective fluid regions. The velocity
potentials φ j (x, y) for j = 1, 2 satisfy Eq. 1 along with the boundary conditions (2)–(5) and the far-field condition
as in Eq. 6 with N = 1. Using the expansion formulae for wave structure interaction problems (as in [19] and [21]),
the velocity potentials φ j (x, y) for j = 1, 2 are expressed as

φ1(x, y) = (e−ik10x + R10eik10x ) f10(y) +
I I∑

n=I

R1neiεnk1n x f1n(y) +
∞∑

n=1

R1ne−k1n x f1n(y), x > 0,

φ2(x, y) = T10e−ik20x f20(y) +
I I∑

n=I

T1ne−iεnk2n x f2n(y) +
∞∑

n=1

T1nek2n x f2n(y), x < 0,

(8)

where R1n, T1n for n = 0, I, I I, 1, 2, . . ., are the unknown constants to be determined, εn = 1 for n = I and
εn = −1 for n = I I . The eigenfunctions f jn(y) for j = 1, 2 are given by

f jn(y) = cosh γ jn(h j − y)

cosh γ jnh j
, n = 0, I, I I and f jn(y) = cos γ jn(h j − y)

cos γ jnh j
, n = 1, 2 . . . , (9)
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y=h1

y=h2

x=0

Ice sheet

y

x

z Incident wave

Fig. 2 Schematic diagram for single step bottom topography

where γ jn’s for j = 1, 2 are the eigenvalues and satisfy the dispersion relations

K = (Dγ 4
jn − Qγ 2

jn + 1)γ jn tanh γ jnh j , n = 0, I, I I, (10)

with γ jn = iγ jn for n = 1, 2, 3, . . .. Apart from the real positive root γ j0, the dispersion relation for each j = 1, 2
in Eq.10 has four complex roots γ jn for n = I, I I, I I I, I V of the form ±α ± iβ with γ 2

jn = k2
jn + l2 where

l = γ10 sin θ . In the present study, we have considered two complex roots with positive real parts in the expansion
of the reduced velocity potentials as in Eq. 8 for the sake of boundedness of the solution. In addition, there are an
infinite number of purely imaginary roots γ jn with γ 2

jn = k2
jn − l2 for n = 1, 2, . . . .

It may be noted that the eigenfunctions f jn(y) satisfy the orthogonality relation as given by

〈 f jm, f jn〉 =
{

0 for m 	= n,

C jn for m = n = 0, I, I I, 1, 2, . . . ,
(11)

with respect to the mode-coupling relation as defined by (see [19])

〈 f jm, f jn〉 =
∫ h j

0
f jm f jndy − Q

K
f ′

jm(0) f ′
jn(0) + D

K

{
f ′′′

jm(0) f ′
jn(0) + f ′

jm(0) f ′′′
jn(0)

}
, (12)

where

C jn = 2γ jnh j (1 − Qγ 2
jn + Dγ 4

jn) + (1 − 3Qγ 2
jn + 5Dγ 4

jn) sinh 2γ jnh j

4γ jn(1 − Qγ 2
jn + Dγ 4

jn) cosh2 γ jnh j
for m = n = 0, I, I I, (13)

with C jn for n = 1, 2, . . . are obtained by substituting γ jn = iγ jn .
In order to determine the unknown coefficients, the mode-coupling relation (12) is applied on the velocity

potential φ2(0, y) and the eigenfunction f2m(y) along with the continuity of pressure as in Eq. 4 across the vertical
interface x = 0, 0 < y < h2 to obtain

〈φ2(0, y), f2m(y)〉 =
∫ h2

0
φ2(0, y) f2m(y)dy − Q

K
φ2y(0, 0) f ′

2m(0) + D

K

{
φ2yyy(0, 0) f ′

2m(0) + φ2y(0, 0) f ′′′
2m(0)

}

=
∫ h2

0
φ1(0, y) f2m(y)dy − Q

K
α1 f ′

2m(0) + D

K

{
α3 f ′

2m(0) + α1 f ′′′
2m(0)

}
, (14)

for m = 0, I, I I, 1, 2, . . .. Further, using the orthogonal property of the eigenfunction f2m(y) as in Eq. 11 and the
expressions of the velocity potentials as in Eq. 8 yields

R10

∫ h2

0
f10(y) f2m(y)dy +

I I∑

n=I

R1n

∫ h2

0
f1n(y) f2m(y)dy +

∞∑

n=1

R1n

∫ h2

0
f1n(y) f2m(y)dy

−T1m〈 f2m(y), f2m(y)〉 + α1

{
D

K
f ′′′
2m(0) − Q

K
f ′
2m(0)

}
+ α3

{
D

K
f ′
2m(0)

}
= −

∫ h2

0
f10(y) f2m(y)dy, (15)

where α1 = φ2y(0, 0) and α3 = φ2yyy(0, 0). Once again, applying the mode-coupling relation (12) on φ1x (0, y)

and f1m(y) and utilizing the continuity of horizontal velocity across the vertical interface x = 0, 0 < y < h2 as in
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Eq. 4 along with the condition of zero horizontal velocity on x = 0, h2 < y < h1, we obtain

〈φ1x (0, y), f1m(y)〉=
∫ h1

0
φ1x (0, y) f1m(y)dy− Q

K
φ1xy(0, 0) f ′

1m(0)+ D

K

{
φ1xyyy(0, 0) f ′

1m(0)+φ1xy(0, 0) f ′′′
1m(0)

}

=
∫ h2

0
φ2x (0, y) f1m(y)dy − Q

K
α2 f ′

1m(0) + D

K

{
α4 f ′

1m(0) + α2 f ′′′
1m(0)

}
, (16)

for m = 0, I, I I, 1, 2, . . .. Applying the orthogonal property of the eigenfunction f1m(y) as in Eq. 11 and the
expressions of the velocity potentials as in Eq. 8, we obtain

iεmk1m R1m〈 f1m(y), f1m(y)〉 + ik20T10

∫ h2

0
f20(y) f1m(y)dy +

I I∑

n=I

ik2nεnT1n

∫ h2

0
f2n(y) f1m(y)dy

−
∞∑

n=1

k2nT1n

∫ h2

0
f2n(y) f1m(y)dy − α2

{
D

K
f ′′′
1m(0) − Q

K
f ′
1m(0)

}
− α4

{
D

K
f ′
1m(0)

}
= δm,

(17)

where α2 = φ1xy(0, 0) and α4 = φ1xyyy(0, 0), δm =
{

ik1m〈 f1m(y), f1m(y)〉 for m = 0,

0 for m = I, I I, 1, 2 . . . ,
εm = 1 for

m = I, 0, 1, 2, . . ., εm = −1 for m = I I and εn is same as defined earlier.
The unknowns α1, α2, α3 and α4 are determined by utilizing the edge conditions as in Eq. 5. The infinite sums

present in Eqs. 15 and 17 are truncated up to finite N (say) terms to facilitate the numerical calculations. Thus, from
Eqs. 15, 17 and the edge conditions as in Eq. 5, we obtain a linear system of (2N + 10) algebraic equations for
the determination of (2N + 10) unknowns. Once the unknown constants R10 and T10 are determined, the reflection
and transmission coefficients Kr and Kt which are defined as

Kr = |R10| and Kt =
∣∣∣∣
γ20 tanh γ20h2

γ10 tanh γ10h1
T10

∣∣∣∣ , (18)

are obtained in a direct manner.

2.3 The critical angle

In the case of wave scattering by a single step, equality of the z-component of the wave number in the regions 1
and 2 yields the equivalent form of Snell’s law corresponding to flexural gravity waves as given by

γ10 sin θ1 = γ20 sin θ2, (19)

where γ10 and γ20 are wave numbers in regions 1 and 2, respectively, θ1 is the incident wave angle made with the
positive x-axis and θ2 is the transmitted wave angle made with the negative x-axis. If γ10 < γ20, then sin θ1 > sin θ2,
which implies that the transmitted wave angle is always less than the incident wave angle. Thus, the transmitted
progressive wave is refracted towards the normal at the step topography and full reflection never occurs. If, on the
other hand, γ10 > γ20, then sin θ1 < sin θ2, which implies that the transmitted wave angle is greater than the incident
wave angle. Hence the transmitted wave moves away from the normal at the step topography. Since 0 < θ2 ≤ π/2,
there exists a natural limit to the angle of incidence θ1, beyond which wave transmission is not possible. Substituting
θ2 = π/2 in relation (19), we obtain

γ10 sin θ1 = γ20 ⇒ θ1 = sin−1
(

γ20

γ10

)
= θcrit (say), (20)

where θcrit is the critical angle beyond which full reflection takes place. In the present analysis, it is observed that
γ20 > γ10 for h1 > h2. Hence, full reflection is never possible when waves propagate from a higher- to a lower-depth
region. On the contrary, the critical angle plays an important role in the case when waves travel from lower to higher
depth regions. In the case of wave propagation over two steps, assuming that θ j , j = 1, 2, 3 are the angles made
by the progressive wave with the x-axis in regions 1,2,3, Snell’s law yields

γ10 sin θ1 = γ20 sin θ2, γ20 sin θ2 = γ30 sin θ3. (21)
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It may be noted that γ10 < γ20 since h1 > h2, which in turn implies θ1 > θ2. Thus, full reflection never takes place.
However, there is a maximum value θ2max (say) of θ2 which is given by θ2 max = sin−1(γ10/γ20). Further, h2 < h3

yields γ20 > γ30. Hence, from Eq. 21, θ2 < θ3, which leads to a critical angle θ2crit = sin−1(γ30/γ20). In reality,
θ2 > θ2crit will occur only if θ2 max > θ2crit.

3 Wave scattering based on shallow-water theory

In this section, we assume that the geometry of the physical problem, the characteristic of the fluid motion and
ice-sheet are the same as discussed in the previous section except the wave motion which is based on the linearized
long-wave theory. Thus, the velocity potential � j (x, z, t) and the deflection of the ice-sheet ζ j (x, z, t) can be
written as � j (x, z, t) = Re{φ j (x)eilz−iωt }, ζ j (x, z, t) = Re{η j (x)eilz−iωt }, where Re denotes the real part, ω is
the angular frequency and l is the z-component of the wave number. From the equation of continuity, it can be easily
derived that (as in [10] and [11])

−iωη j = h j

(
∂2

x − l2
)

φ j . (22)

Further, the combined equation of motion for the fluid and the ice-sheet in the presence of a uniform compressive
force Tc along with the continuity equation as in Eq. 22 gives rise to the linearized long-wave equation of motion
in the ice-covered region as given by
[

EI
(
∂2

x − l2
)3 + Tc

(
∂2

x − l2
)2 + (ρg − msω

2)
(
∂2

x − l2
)

+ ρω2

h j

]
φ j = 0. (23)

The continuity of pressure and mass flux at the step interface x = −a j (as in [11]) yields

φ( j+1) = φ j and h( j+1)φ( j+1)x = h jφ j x . (24)

Assuming that the vertical deflection of the ice-sheet, slope of deflection, bending moment and shear force of the
ice-sheet are continuous at the points x = −a j , we obtain

h jL(∂x )φ j = h( j+1)L(∂x )φ( j+1),

h jL(∂x )φ j x = h( j+1)L(∂x )φ( j+1)x ,

h j

[
L(∂x ) + l2(1 − ν)

]
L(∂x )φ j = h( j+1)

[
L(∂x ) + l2(1 − ν)

]
L(∂x )φ( j+1),

h j

[
E I∂x

{
L(∂x ) − l2(1 − ν)

}
+ Tc∂x

]
L(∂x )φ j = h( j+1)

[
E I∂x

{
L(∂x ) − l2(1 − ν)

}
+ Tc∂x

]
L(∂x )φ( j+1),

(25)

where L(∂x ) = ∂2
x − l2. The far-field radiation condition is given by

φ j (x) =
{

(e−ik10x + RN0eik10x ) as x → ∞,

TN0e−ik(N+1)0x as x → −∞,
(26)

with RN0 and TN0 being the complex amplitudes of the reflected and transmitted waves in the case of N steps and
k j0, j = 1, N + 1 are the positive real roots of the shallow-water flexural gravity-wave dispersion relations,

EI(k2
j0 + l2)3 − Tc(k

2
j0 + l2)2 + (ρg − msω

2)(k2
j0 + l2) = ρω2

h j
. (27)

3.1 Wave scattering by a single step

To analyze oblique flexural gravity-wave scattering by a single step under shallow-water approximation, the domain
is divided into two sub-domains as in Sect. 2.2. The velocity potentials φ j (x), j = 1, 2, satisfy Eq. 23 along with
the boundary conditions (24)–(25) and the far-field condition (26) with N = 1 are expanded as given by
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φ j (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(e−ik10x + R10eik10x ) +
I I∑

n=I

R1neiεnk1n x , for x > 0,

T10e−ik20x +
I I∑

n=I

T1ne−iεnk2n x for x < 0,

(28)

where R1n , T1n , n = 0, I, I I are the unknown constants to be determined and the k jn for j = 1, 2 satisfy the
dispersion relations

EI(k2
jn + l2)3 − Tc(k

2
jn + l2)2 + (ρg − msω

2)(k2
jn + l2) = ρω2

h j
, n = 0, I, I I. (29)

It may be noted that the dispersion relation as in Eq. 29 has a negative real root of equal magnitude to k j0.
Further, Eq. 29 has four complex roots of the form k jn = ±α ±iβ for n = I, I I, I I I, I V . By taking into account
the boundedness of the solution, in Eq. 28, terms containing the negative real root and the two complex roots with
negative real parts are not considered. Using the continuity conditions as in Eqs. 24 and 25, we obtain a linear
system of six algebraic equations for the determination of six unknown constants R1n, T1n , n = 0, I, I I . Once
the unknowns R10 and T10 are obtained, the reflection and transmission coefficients are derived from the relations
Kr = |R10| and Kt = |(k2

20 +l2)h2T10/(k2
10 +l2)h1|. In the next subsection, solutions based on only the progressive

wave modes will be discussed in order to compare the results with/without evanescent modes.

3.2 Wave transformation based on wave-energy flux

In this subsection, we discuss wave transformations, namely wave reflection and wave shoaling by considering only
the progressive wave modes.

3.2.1 Wave reflection

In this case, the reflection and transmission coefficients are obtained explicitly by using the energy relation A(8) in
Appendix A as is appropriate for shallow-water waves and the continuity of pressure as in Eq. 24. In such a case,
Kr and Kt are defined in a similar way as in the Sect. 3.1 and are given by

Kr =
∣∣∣∣
1 − χ

1 + χ

∣∣∣∣ , Kt =
∣∣∣∣

2

1 + χ

∣∣∣∣ , (30)

where

χ = k20(k2
10 + l2)

k10(k2
20 + l2)

(3E I (k2
20 + l2)2 − 2Tc(k2

20 + l2) + ρg − msω
2)

(3E I (k2
10 + l2)2 − 2Tc(k2

10 + l2) + ρg − msω2)
(31)

On the other hand, using the continuity of pressure and mass flux as in Eq. 24 and neglecting the non-propagating
modes from Eq. 28, the reflection and transmission coefficients can be obtained as

Kr =
∣∣∣∣
h1k10 − h2k20

h1k10 + h2k20

∣∣∣∣ , Kt =
∣∣∣∣

2h1k10

h1k10 + h2k20

∣∣∣∣. (32)

Similar expressions for Kr and Kt can be found in the case of free-surface gravity waves as in [22, p. 137]. It may
also be noted that the expressions for reflection and transmission coefficients as in Eqs. 30 and 32 are different as
these quantities are derived from two different principles.

3.2.2 Wave shoaling

Assuming that there is no wave-energy transformation due to reflection or refraction, the energy relation A(8) in
Appendix A yields

Ks =
{

k10(k2
20 + l2)

k20(k2
10 + l2)

(3E I (k2
10 + l2)2 − 2Tc(k2

10 + l2) + ρg − msω
2)

(3E I (k2
20 + l2)2 − 2Tc(k2

20 + l2) + ρg − msω2)

}1/2

(33)
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where Ks is the ratio of the amplitude of the transmitted waves to the incident waves and referred to as the shoaling
coefficient. Relation (33) is the generalization of Green’s law (see [23, p.138] in the case of free-surface gravity
waves) for three-dimensional flexural gravity waves.

4 Wave scattering by multiple steps

In the present section, using the results for wave scattering by a single step in both the cases of finite water depth and
shallow-water approximations, we obtain the solution for wave scattering by multiple steps utilizing the method of
wide-spacing approximation (see [22, p.133]).

4.1 Wide-spacing approximation for N steps

The general boundary-value problem is same as that defined in Sect. 2.1. Here, the flexural gravity wave experiences
partial reflection and transmission at the steps, which are placed widely apart at x = −a j , j = 1, 2, . . . , N with
a j > a j−1. It is assumed that the distance between two consecutive steps is much larger than the wavelength of the
incident plane progressive wave, i.e., |a j+1 −a j | >> λ, for j = 1, 2, . . . , N −1 where λ is the incident wavelength
to ensure that the evanescent modes do not contribute to the solution. Thus, the local effects produced during the
interaction of the incident wave with one of the steps do not affect subsequent interactions. The whole domain is
divided into N + 1 regions with water depth h j , j = 1, 2, . . . , N + 1 along the vertical interface at the steps. The
bottom profile containing N steps is given by

y =
⎧
⎨

⎩

h1, −a1 < x < ∞, −∞ < z < ∞,

h j+1, −a j+1 < x < −a j , for j = 1, 2, . . . , N ,−1 − ∞ < z < ∞,

hN+1, −∞ < x < −aN , −∞ < z < ∞.

(34)

Assuming that the steps are placed widely apart, we obtain the asymptotic form of the velocity potential φ j for
j = 1, 2, . . . , N + 1 far away from the steps in the respective regions as follows:

φ1 ∼ e−ik10x f0(y) + RN0eik10x f0(y), −a1 < x < ∞,

φ j+1 ∼ A j0e−ik( j+1)0x f0(y) + B j0eik( j+1)0x f0(y), −a j+1 < x < −a j , j = 1, . . . , N − 1
φN+1 ∼ TN0e−ik(N+1)0x f0(y), −∞ < x < −aN .

(35)

Equating the left- and right-going components of the propagating waves at the steps x = −a j for j = 1, 2, . . . , N
with the amplitudes of the reflected and transmitted waves in the prescribed region, we arrive at a system of
2N linear equations associated with 2N unknowns RN0, TN0, A j0, B j0, j = 1, 2, . . . , N − 1 which is given
by

RN0e−ik10a1 = r1eik10a1 + B10t2e−ik20a1 ,

A j0e−ik( j+1)0a j = t j A( j−1)0eik j0a j + B j0r( j+1)0e−ik( j+1)0a j ,

B j0e−ik( j+1)0a j+1 = A j0r j+1eik( j+1)0a j+1 + t j+2 B( j+1)0e−ik( j+2)0a j+1,

TN0eik(N+1)0aN = A(N−1)0tN eikN0aN for j = 1, 2, . . . , N − 1,

(36)

with A j0 = 1 for j = 0 and BN0 = 0. Here r j and t j for j = 1, 2, . . . , N correspond to the amplitude of the
reflected and transmitted wave for j th steps in isolation. Solving the above system of equations, the reflection and
transmission coefficients Kr and Kt for N steps are obtained.

5 Numerical results and discussion

The present analysis is based on the study of the reflection coefficient Kr , transmission coefficients Kt and the
deflection of the ice-sheet ζ j for different values of water depth, step length, wave number, compressive force Tc
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and angle of incidence θ . The step length is taken as δa j with δa j = |a j+1 −a j | for j = 1, 2, . . . , N −1. The values
of the physical parameters, which are kept fixed throughout the numerical computations, are given by E = 5 GPa,
ρ = 1025.0 kg m−3, ρi = 922.5 kg m−3, g = 9.81 m s−2, d = 1.0 m, and ν = 0.3. The value of compressive force
Tc is taken as zero unless mentioned otherwise. In the context of the present paper, the numerical discussions are
limited to wave scattering by a single step and its generalization to a submerged block based on the application
of the wide-spacing approximation. The analysis is based on the study of reflection and transmission coefficients
for different values of water depth, step length, non-dimensional wave number, compressive force and angle of
incidence. The correctness of the computational results is checked by using the appropriate energy relation similar
to the one discussed in Appendix A.

5.1 Wave scattering in finite water depth

In this subsection, numerical results for the reflection and transmission coefficients associated with wave scattering
due to single step and submerged block in water of finite depth are analyzed in detail.

In Fig. 3, the reflection and transmission coefficients Kr and Kt are plotted versus the angle of incidence θ for
different values of water depth h2/h1 with γ10h1 = 0.5 in the case of a single step. It is observed that Kr attains a
minimum in the range 500 < θ < 600 and then rises sharply with the rise in θ . This may be due to the change of
phase of the incident and reflected waves. However, the reflection coefficient becomes unity for θ = 900, and sub-
sequently the transmission coefficient is zero. Further, as h2/h1 increases, Kr approaches zero and Kt approaches
unity between θ = 500 to θ = 600, which shows that, as the water depth increases, the topographic change plays
a marginal role in wave scattering. Further, topographic changes far away from the free surface do not contribute
significantly to wave scattering.

In Fig. 4, the reflection and transmission coefficients Kr and Kt are plotted versus the non-dimensional
wave number γ10h1 for different values of h2/h1 with θ = 540 in the case of a single step. Here, the wave
reflection is more in the case of short waves (γ0h1 >> 1) than for long waves (γ0h1 < 1). In addition, wave trans-
mission is always more than the wave reflection. It may further be noted that the effects of bottom discontinuity on
the Kr and Kt graphs are more prominent in the case when the change occurs near the upper surface.

In Fig. 5, the reflection and transmission coefficients Kr and Kt are plotted versus the non-dimensional wave
number γ10h1 for different values of the compressive force Tc with h2/h1 = 0.5 and θ = 540 in the case of a single

Fig. 3 Reflection coefficient Kr and transmission coefficient
Kt versus angle of incidence θ for different values of h2/h1
with γ10h1 = 0.5 in the case of a single step

Fig. 4 Reflection coefficient Kr and transmission coefficient
Kt versus non-dimensional wave number γ10h1 for different
values of h2/h1 with θ = 540 in the case of a single step
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Fig. 5 Reflection coefficient Kr and transmission coefficient
Kt versus non-dimensional wave number γ10h1 for different
values of compressive force Tc with h2/h1 = 0.5 and θ = 540

in the case of a single step.

Fig. 6 Reflection coefficient Kr and transmission coefficient
Kt versus angle of incidence θ for different values of h2/h1
with h3/h1 = 1.0, δa1/h1 = 1.0 and γ10h1 = 0.5 in the case
of a submerged block

step. Here, it is observed that for higher values of Tc, Kr increases with an increase in γ10h1. On the other hand, for
γ10h1 < 0.5, a minimum in the reflection coefficient is observed, although Kr increases with an increase in γ10h1.
The results suggest that the effect of abrupt changes in bottom topography on flexural gravity-wave scattering is
less for short waves. Further, it has been observed that for Tc > 1.5(E Iρg)1/2, there exists a limiting value of the
non-dimensional wave number γ10h1 beyond which Kr and Kt do not satisfy the energy relation. This provides a
limiting value of the compressive force for the existence of progressive flexural gravity-wave mode and the limiting
value may be called the critical value of the compressive force (see [20] and [24] for a detailed discussion on the
critical values of the compressive force).

Figure 6 shows the variation of the reflection and transmission coefficients Kr and Kt versus angle of incidence
θ for different values of h2/h1 with δa1/h1 = 1.0 and γ10h1 = 0.5 in the case of a submerged block. It may be
observed that Kr gradually decreases to attain a minimum and then approaches unity beyond certain values of θ . On
the other hand, Kt initially increases and then decreases to zero with an increase in θ . It may further be noted that,
as the height of the block decreases, the minimum in the reflection-coefficient curve is attained at a lower incident
angle. Comparison of Figs. 3 and 6 reveals that Kt becomes more than one in the case of a single step, whilst it
never goes beyond unity in the case of two steps. This may be attributed to the fact that wave reflection by multiple
steps reduces energy transmission to subsequent regions compared to the case of a single step.

Figure 7 shows the variation of the reflection and transmission coefficients Kr and Kt versus the non-dimensional
wave number γ10h1 for different values of δa1/h1 with h2/h1 = 0.5, h3/h1 = 1.0 and θ = 540 in the case of
a submerged block. Here, as δa1/h1 increases, the minimum in the wave reflection occurs for smaller values of
γ0h1. It may further be noted that wave reflection increases as δa1/h1 increases. On the other hand, transmission
coefficient Kt is nearly equal to one for all wavelengths and water depths.

5.2 Shallow-water approximation

Here we will discuss some numerical results obtained for flexural gravity-wave scattering due to a single step and
a submerged block based on the shallow-water approximation.

In Fig. 8, the reflection and transmission coefficients Kr and Kt are plotted versus the non-dimensional wave
number γ10h1 for different values of h2/h1 with θ = 540 in the case of a single step. The graphs are similar in
nature as those of Fig. 4. It is found that, as the water-depth ratio h2/h1 increases, less reflection takes place. On
the other hand, transmission of waves is comparatively high for all values of γ10h1. Further, in the case of waves
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Fig. 7 Reflection coefficient Kr and transmission coefficient
Kt versus non-dimensional wave number γ10h1 for different
values of δa1/h1 with h2/h1 = 0.5, h3/h1 = 1.0 and θ = 540

in the case of a submerged block

Fig. 8 Reflection coefficient Kr and transmission coefficient
Kt versus non-dimensional wave number γ10h1 for different
values of h2/h1 with θ = 540 in the case of a single step

having longer wavelengths, Kt increases as h2/h1 decreases, whilst beyond a certain value of γ10h1, Kt decreases
with a decrease in values of the depth ratio h2/h1.

In Fig. 9, the reflection and transmission coefficients Kr and Kt are plotted versus angle of incidence θ for
different values of water depth h2/h1 with δa1/h1 = 2.0 and γ10h1 = 0.5 in the case of a submerged block. In
this case too, with an increase in the water-depth ratio h2/h1, a minimum in Kr is attained for smaller values of
θ . The wave reflection is significantly more when the block is closer to the upper surface as more wave energy is
reflected by the block in such a case.

The reflection and transmission coefficients Kr and Kt are plotted versus angle of incidence θ in Fig. 10 for
different values of δa1/h1 with h2/h1 = 0.5, h3/h1 = 1.0 and γ10h1 = 0.5 in the case of a submerged block. It
is found that, as the step length increases, the number of zeros in the reflection coefficient graph increases. Other
observations are similar as in the case of a submerged block in finite water depth.

In Fig. 11, the reflection and transmission coefficients Kr and Kt are plotted versus the non-dimensional wave
number γ10h1 for different values of θ with δa1/h1 = 2.0, h2/h1 = 0.5 and h3/h1 = 1.0 in the case of a submerged
block. It is interesting to note that the occurrence of a resonating pattern in the Kr reduces as θ increases. However,
as θ increases, the general trend of the reflection coefficient Kr is decreasing in nature. A reverse pattern is observed
in the case of the transmission coefficient Kt .

In Fig. 12, the reflection and transmission coefficients Kr and Kt are plotted versus the non-dimensional wave
number γ10h1 for different values of the compressive force Tc with δa1/h1 = 2.0, h2/h1 = 0.5, h3/h1 = 1.0 and
θ = 300 in the case of a submerged block. In this case it is observed that the reflection coefficient Kr remains the
same within the range 0 < γ10h1 < 0.6 but increases and becomes high for higher values of the compressive force
Tc in the interval 0.6 < γ10h1 < 0.8. Multiple occurrences of a resonating pattern in the reflection coefficient are
observed here which is similar to that of Fig. 11.

6 Conclusions

The flexural gravity-wave scattering by multiple-step bottom topography in the presence of a compressive force
has been analyzed using the linearized theory of water waves. The energy relations for three-dimensional oblique
flexural gravity waves in the presence of a uniform compressive force has been derived based on the law of
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Fig. 9 Reflection coefficient Kr and transmission coefficient
Kt versus angle of incidence θ for different values of h2/h1
with h3/h1 = 1.0, δa1/h1 = 2.0 and γ10h1 = 0.5 in the case
of a submerged block

Fig. 10 Reflection coefficient Kr and transmission coefficient
Kt versus angle of incidence θ for different values of δa1/h1
with h2/h1 = 0.5, h3/h1 = 1.0 and γ10h1 = 0.5 in the case
of a submerged block

Fig. 11 Reflection coefficient Kr and transmission coefficient
Kt versus non-dimensional wave number γ10h1 for different
values of θ with h2/h1 = 0.5, h3/h1 = 1.0 and δa1/h1 = 2.0
in the case of a submerged block

Fig. 12 Reflection coefficient Kr and transmission coefficient
Kt versus non-dimensional wave number γ10h1 for different
values of compressive force Tc with h2/h1 = 0.5, h3/h1 =
1.0, δa1/h1 = 2.0 and θ = 300 in the case of a submerged
block

conservation of energy flux. A brief discussion on the existence of a critical angle for the case of single and multiple
steps has been provided. The wave transformation due to step topography based on the shallow-water approximation
was analyzed considering the continuity of pressure and mass flux. Numerical computations for the single step and
a submerged block were carried out in different cases with and without a compressive force. Limiting values of the
compressive force were found beyond which the reflection and transmission coefficients do not obey the energy
relation. In the case of a submerged block, it was observed that, as the step length increases, a resonating pattern in
the reflection coefficient increases, which is similar to the case of surface gravity-wave scattering by a submerged
block.
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Appendix A, energy density and energy relation

In this Appendix, the total energy density and the corresponding energy relation obtained by [21] is generalized
for a three-dimensional oblique flexural gravity wave in the presence of a uniform in-plane compressive force Tc.
In the case of a three-dimensional plane flexural gravity-wave profile ζ(x, z, t) = Re

{
Hei(kx+lz−ωt)/2

}
, using the

ice-covered-surface boundary condition (2), the velocity potential �(x, y, z, t) is obtained as

�(x, y, z, t) = Re

{
iH(E Iγ 4 − Tcγ

2 + ρg − msω
2)

2ρω

cosh γ (h − y)

cosh γ h
ei(kx+lz−ωt)

}
, (A1)

where h is the water depth, H is the wave height and γ 2 = k2 + l2. The average potential energy PE and kinetic
energy KE per unit surface area are obtained as

PE = k

2π

l

2π

∫ x+ 2π
k

x

∫ z+ 2π
l

z
ρg(h + ζ )

(h + ζ )

2
dxdz = 1

16
ρgH2, (A2)

KE = k

2π

l

2π

∫ x+ 2π
k

x

∫ z+ 2π
l

z

∫ h

−ζ

1

2
ρ[(∂x )

2 + (∂y)
2 + (∂z)

2]� dxdydz + ms

2

k

2π

l

2π

∫ x+ 2π
k

x

∫ z+ 2π
l

z
(∂t )

2ζ dxdz

= 1

16
H2(E Iγ 4 − Tcγ

2 + ρg), (A3)

It may be recalled that, unlike the case of gravity waves, apart from the potential and kinetic energies, the average
total wave energy per unit surface area associated with plane flexural gravity waves includes the surface energy;
see [25, Sect. 4.2]. Thus, the total surface energy SE over one wave length is given by

SE = 1

2

k

2π

l

2π

∫ x+ 2π
k

x

∫ z+ 2π
l

z
{E I (∂2

x + ∂2
z )2 − 2E I (1 − ν)[∂2

x ∂2
z − (∂x∂z)

2] − Tc[(∂x )
2 + (∂z)

2]}ζ dxdz

= 1

16
H2(E Iγ 4 − Tcγ

2). (A4)

The last term containing the compressive force Tc in the integral expression for surface energy SE is generated due
to the positive work done by the constant in-plane compressive force Tc per unit surface area. Thus, the total energy
density in the case of flexural gravity waves is given by

E = PE + KE + SE = 1

8
H2(EIγ 4 − Tcγ

2 + ρg). (A5)

From law of conservation of energy flux, we obtain

∇{Ebcg} = 0, (A6)

where b is the distance between two wave rays and the group velocity cg is given by

cg = nc, (A7)

with

n = 1

2

{
5EIγ 4 − 3Tcγ

2 + ρg − msω
2

EIγ 4 − Tcγ 2 + ρg
+ EIγ 4 − Tcγ

2 + ρg − msω
2

EIγ 4 − Tcγ 2 + ρg

2γ h

sinh 2γ h

}

and

c =
√

(EIγ 4 − Tcγ 2 + ρg) tanh γ h

γ (ρ + msγ tanh γ h)
.

Substituting the expressions for E and cg from Eqs. A5 and A7 and using the law of conservation of energy flux
as in Eq. A6, in the case of flexural gravity-wave scattering by a single step as in Sect. 2.2, we derive the energy
relation as

1 − K 2
r = χ K 2

t , (A8)

123



Oblique flexural gravity-wave scattering 339

where

χ = k20γ
2
10 sinh 2γ10h1

k10γ
2
20 sinh 2γ20h2

× (ρg − msω
2 − Tcγ

2
20 + EIγ 4

20)2γ20h2 + (ρg − msω
2 − 3Tcγ

2
20 + 5EIγ 4

20) sinh 2γ20h2

(ρg − msω2 − Tcγ
2
10 + EIγ 4

10)2γ10h1 + (ρg − msω2 − 3Tcγ
2
10 + 5EIγ 4

10) sinh 2γ10h1
. (A9)

In the relation (A8), we have used Snell’s law of refraction as given by
√

b2

b1
=

√
cos θ2

cos θ1
, (A10)

where θ1 and θ2 are the incident and refracted wave angles made with the positive and negative x-axes, respectively,
and b1 and b2 correspond to the distance between two wave rays in region 1 and region 2, respectively. The energy
relation (A8) can be derived in an alternate manner by the direct use of Green’s second identity as in [26].

Appendix B, wave scattering due to infinite step bottom topography

The scattering of flexural gravity waves by an infinite step is analyzed in brief by using a similar approach as in the
case of a finite step. It is assumed that a progressive wave from a region of infinite water depth is obliquely incident
over a infinite step at x = 0. A part of the wave energy is transmitted into the region of finite water depth h2 and a part
is reflected back into the region of infinite water depth (h1 → ∞ as in Fig. 2). Hence, similar to the case of a single
step as in Fig. 2, the whole domain is divided into two sub-domains, and the fluid is assumed to occupy the regions
0 < x < ∞, 0 < y < ∞,−∞ < z < ∞ (referred as region 1) and −∞ < x < 0, 0 < y < h2,−∞ < z < ∞
(referred as region 2). Thus, the spatial velocity potentials φ j (x, y), j = 1, 2 satisfy the governing equation (1),
the linearized ice-covered surface boundary condition (2), the edge conditions at (0, 0) as in (4) and the matching
conditions at the interface x = 0, 0 < y < h2 as in (5). The bottom boundary condition in region 2 remains the
same as in Sect. 2.2, whilst in region 1 it is given by

φ1, |∇φ1| → 0 as y → ∞, 0 < x < ∞,

φ1x = 0 on x = 0, h2 < y < ∞.
(B1)

Further, the far-field radiation condition in region 2 remains the same as in Eq. 6, whilst in region 1, it reduces to

φ1(x, y) ∼ (e−ik10x + R10eik10x )e−γ10 y as x → ∞. (B2)

The expansion of the velocity potential φ2(x, y) in region 2 will remain the same as described in (8). However, the
velocity potential φ1(x, y) for region 1 is expressed in terms of appropriate eigenfunctions as

φ1(x, y) = (e−ik10x + R10eik10x ) f10(y) +
I I∑

n=I

R1neiεnk1n x f1n(y) + 2

π

∫ ∞

0

L(ξ, y)A(ξ)e−ςx dξ

�(ξ)
, (B3)

where the R1n for n = 0, I, I I are the unknown constants and A(ξ) is the unknown function, L(ξ, y) = ξ(1 +
Qξ2 + Dξ4) cos ξ y − K sin ξ y and �(ξ) = ξ2(1 + Qξ2 + Dξ4)2 + K 2. The eigenfunction f1n(y) in the case of
infinite depth is given by f1n(y) = e−γ1n y for n = 0, I, I I , where the eigenvalue γ1n satisfies the infinite-depth
dispersion relation as given by

K = (Dγ 4
1n − Qγ 2

1n + 1)γ1n . (B4)

It may be noted that the eigenfunctions f1n(y), n = 0, I, I I and L(ξ, y) satisfy the orthogonal mode-coupling
relation defined in (12) with h → ∞ (see [20, Sect. 3.2]), which yields

〈L(ξ, y), f1n(y)〉 = 0 for ξ > 0 (B5)
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and

〈 f1m, f1n〉 =
⎧
⎨

⎩

0, for n 	= m, n = m = 0, I, I I,
(1 − 3Qγ 2

1n + 5Dγ 4
1n)

2K
, for n = m = 0, I, I I.

(B6)

Proceeding in a similar manner as in the case of a finite step discussed in Sect. 2 and using the orthogonal mode-
coupling relations in (B5) and (B6), a linear system of (N + 6) algebraic equations is obtained to determine the
(N + 6) unknown constants R1n, n = 0, I, I I and T1n, n = 0, I, I I, 1, 2, . . . ,N along with unknown function
A(ξ). Finally, the reflection and transmission coefficients Kr and Kt are obtained as

Kr = |R10| and Kt =
∣∣∣∣
γ20 tanh γ20h2

γ10
T10

∣∣∣∣ . (B7)

Acknowledgements DK acknowledges the financial support received from CSIR, Govt. of India, in terms of a Senior Research
Fellowship. JB acknowledges the support received from the Indian Statistical Institute, Kolkata, as a visiting scientist to pursue this
research work. The partial support from the Naval Research Board, Govt. of India, is gratefully acknowledged.

References

1. Marchenko A (1999) Parametric excitation of flexural-gravity edge waves in the fluid beneath an elastic ice sheet with a crack. Eur
J Mech B/Fluids 18(3):511–525

2. Williams TD, Squire VA (2004) Oblique scattering of plane flexural-gravity waves by heteogeneities in sea-ice. Proc R Soc Lond
A 460:3469–3497

3. Williams TD, Squire VA (2006) Scattering of flexural-gravity waves at the boundaries between three floating sheets with applica-
tions. J Fluid Mech 569:113–140

4. Porter R, Evans DV (2006) Scattering of flexural waves by multiple narrow cracks in ice sheets floating on water. Wave Motion
43:425–443

5. Bennetts LG (2007) Wave scattering by ice sheets of varying thickness. PhD thesis, University of Reading, United Kingdom
6. Bennetts LG, Biggs NRT, Porter D (2007) A multi-mode approximation to wave scattering by ice sheets of varying thickness.

J Fluid Mech 579:413–443
7. Squire VA (2008) Synergies between VLFS hydroelasticity and sea ice research. Int J Offshore Polar Eng 18(3):1–13
8. Bai KJ, Yoo BS, Kim JW (2001) A localized finite-element analysis of a floating runaway in a harbor. Mar Struct 14:

89–102
9. Watanabe E, Utsunomiya T, Wang CM (2004) Hydroelastic analysis of pontoon-type VLFS: a literature survey. Eng Struct 26:

245–256
10. Ohkusu M, Namba Y (2004) Hydroelastic analysis of large floating structures. J Fluids Struct 19:543–555
11. Sturova IV (2006) The effect of periodic surface pressure on a rectangular elastic plate floating on shallow water. J Appl Math

Mech 70(3):378–386
12. Williams TD, Squire VA (2008) The effect of submergence on wave scattering across a transition between two floating flexible

plates. Wave Motion 45:361–379
13. Wang CD, Meylan MH (2002) The linear wave response of a floating thin plate on water of variable depth. Appl Ocean Res

24:163–174
14. Andrianov AI, Hermans AJ (2003) The influence of water depth on the hydroelastic response of a very large floating platform. Mar

Struct 16:355–371
15. Murai M, Inoue Y, Nakamura T (2003) The prediction method of hydroelastic response of VLFS with sea bottom topographical

effects. In: Proceedings of 13th international offshore and polar engineering, pp 107–112
16. Porter D, Porter R (2004) Approximations to wave scattering by an ice sheet of variable thickness over undulating bed topography.

J Fluid Mech 509:145–179
17. Kyoung JY, Hong SY, Kim BW, Cho SK (2005) Hydroelastic response of a very large floating structure over a variable bottom

topography. Ocean Eng 32:2040–2052
18. Belibassakis KA, Athanassoulis GA (2006) A coupled-mode technique for weakly nonlinear wave interaction with large floating

structures lying over variable bathymetry regions. Appl Ocean Res 28(1):59–76
19. Manam SR, Bhattacharjee J, Sahoo T (2006) Expansion formulae in wave structure interaction problems. Proc R Soc Lond A

462(2065):263–287
20. Karmakar D, Bhattacharjee J, Sahoo T (2007) Expansion formulae for wave structure interaction problems with applications in

hydroelasticity. Int J Eng Sci 45(10):807–828
21. Bhattarcharjee J, Karmakar D, Sahoo T (2007) Transformation of flexural gravity waves by heterogeneous boundaries. J Eng Math

62:173–188

123



Oblique flexural gravity-wave scattering 341

22. Dingemans MW (1997) Water wave propagation over uneven bottoms: Part-I—linear wave propagation. Advanced series on ocean
engineering, vol 13. World Scientific, Singapore

23. Dean RG, Dalrymple RA (1991) Water wave mechanics for engineers and scientists. Advanced series on ocean engineering,
vol 2. World Scientific, Singapore

24. Schulkes RMSM, Hosking RJ, Sneyd AD (1987) Waves due to a steadily moving source on a floating ice plate Part 2. J Fluid Mech
180:297–318

25. Magrab EB (1979) Vibrations of elastic structural members. SIJTHOFF and NOORDHOFF, Alphen aan den Rijn, The Netherlands
26. Fox C, Squire VA (1994) On the oblique reflection and transmission of ocean waves at shore fast sea ice. Phil Trans R Soc Lond

A 347:185–218

123


	Abstract
	Abstract
	1 Introduction
	2 Wave scattering in finite water depth
	2.1 The general boundary-value problem
	2.2 Wave scattering by a single step
	2.3 The critical angle

	3 Wave scattering based on shallow-water theory
	3.1 Wave scattering by a single step
	3.2 Wave transformation based on wave-energy flux

	4 Wave scattering by multiple steps
	4.1 Wide-spacing approximation for N steps

	5 Numerical results and discussion
	5.1 Wave scattering in finite water depth
	5.2 Shallow-water approximation

	6 Conclusions
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


